Discretization of Liouville type nonautonomous equations preserving integrals

نویسندگان

چکیده

The problem of constructing semi-discrete integrable analogues the Liouville type PDE is discussed. We call equation a discretization if these two equations have common integral. For from well-known Goursat list for which integrals minimal order are less than or equal to we presented corresponding versions. contains new examples non-autonomous Darboux chains.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Discretization of Partial Differential Equations with Integrals

We consider the problem of constructing spatial finite difference approximations on an arbitrary fixed grid which preserve any number of integrals of the partial differential equation and preserve some of its symmetries. A basis for the space of of such finite difference operators is constructed; most cases of interest involve a single such basis element. (The “Arakawa” Jacobian is such an elem...

متن کامل

Uniform Nonautonomous Attractors under Discretization

A nonautonomous or cocycle dynamical system that is driven by an autonomous dynamical system acting on a compact metric space is assumed to have a uniform pullback attractor. It is shown that discretization by a one-step numerical scheme gives rise to a discrete time cocycle dynamical system with a uniform pullback attractor, the component subsets of which converge upper semi continuously to th...

متن کامل

Symmetry preserving discretization of SL(2,R) invariant equations

Symmetry preserving discretization of SL(2,R) invariant equations Anne Bourlioux a, Raphaël Rebelo b,c and Pavel Winternitz a,b a Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada. E-mail: [email protected] b Centre de recherches mathématiques, Université de Montréal, C.P. 6128, succ. Centre-ville, Mon...

متن کامل

Discretization of partial differential equations preserving their physical symmetries

A procedure for obtaining a “minimal” discretization of a partial differential equation, preserving all of its Lie point symmetries is presented. “Minimal” in this case means that the differential equation is replaced by a partial difference scheme involving N difference equations, where N is the number of independent and dependent variable. We restrict to one scalar function of two independent...

متن کامل

Singular Limits in Liouville-type Equations

We consider the boundary value problem ∆u+ε k(x) e = 0 in a bounded, smooth domain Ω in R with homogeneous Dirichlet boundary conditions. Here ε > 0, k(x) is a non-negative, not identically zero function. We find conditions under which there exists a solution uε which blows up at exactly m points as ε→ 0 and satisfies ε ∫ Ω keε → 8mπ. In particular, we find that if k ∈ C(Ω̄), infΩ k > 0 and Ω is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Mathematical Physics

سال: 2021

ISSN: ['1776-0852', '1402-9251']

DOI: https://doi.org/10.1080/14029251.2016.1248159